SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE OUTLINE: AUTOMATIC CONTROL SYSTEMS

CODE NO.: ELN 219-5

PROGRAM: INTRUMENTAION TECHNICIAN

SEMESTER: FOUR

DATE:

JANUARY 1994

PREVIOUS OUTLINE DATED: NONE

APPROVED:

AUTHOR: ENO LUDAVICIUS

130/94

NEW: REV.: X

DATE

hoguth 94-08 DEA DATE

AUTOMATIC CONTROL SYSTEMS COURSE NAME

- 2 -

[•] <u>ELN 219 - 5</u> CODE NO.

ATT COLLE

TOTAL CREDIT HOURS: 90

PREREQUISITE(S):

ELN208

PHILOSOPHY/GOALS:

IN THIS COURSE THE STUDENT WILL DEVELOP THE UNDERSTANDING_OF AUTOMATED CONTROL SYSTEMS WITH RATIO, CASCADE, ADAPTIVE AND FEEDBACK CONTROLS. THE STUDENT WILL OVER VIEW THE BASIC HARDWARE COMPONENTS OF CONTROL SYSTEMS. (ie. 1/0, CONTROLLERS, ACTUATORS, SENSORS) THE LABWORK WILL INCLUDE INTERFACING WITH ANALOG DEVICES TO PLC'S PROGRAMMED BY IPC'S, UTILIZING SERVO, HYDRAULIC AND PNEUMATIC ACTUATORS, INTERFACING ROBOTS TO THEIR WORKCELLS. AUTOMATIC CONTROL SYSTEMS ELR 219 - 5 **COURSE NAME**

CODE NO.

STUDENT PERFORMANCE OBJECTIVES (OUTCOMES):

UPON SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENT WILL BE ABLE TO:

1. PROGRAM AND TROUBLESHOOT THE AB 5 PLC FAMILY.

2. CONNECT SIMPLE PNEUMATIC ACTUATION.

3. PROGRAM HYDRAULIC ROBOTIC ACTUATION

4. PROGRAM SERVO ELECTRICAL ROBOTIC ACTUATION.

5. CONTROL A PRÔCESS WITH A PID LOOP CONTROLLER.

TOPICS TO BE COVERED:

1. OVERVIEW OF FEEDBACK CONTROL SYSTEMS.

2. COMPUTER-CONTROLLED INDUSTRIAL MACHINES, PROCESSES AND ROBOTS.

3. INTRODUCTION TO MODERN HYDRAULICS AND PNEUMATICS.

4. INTERFACING WITH ANALOG DEVICES.

- 4 -	
AUTOMATIC CONTROL SYSTEMS	ELR 219- 5
COURSE NAME	CODE NO.
EARNING ACTIVITIES	RESOURCE MATERIAL
CLASSICAL CONTROL THEORY	RESOURCE MATERIAL
DESCRIBE WHAT CONTROL SYSTEMS ARE	DEOLUDED TEXTDOOK
ND THE WAY WE USE THEM.	- REQUIRED TEXTBOOK
DEFINE THE TERMINOLOGY NECESSARY TO	- HANDOUTS
DESCRIBE CONTROL SYSTEMS.	- MANUALS FROM THE
ie.plant,process,system,feedback,)	AUTOMATION LIBRARY
DEFINE THE DIFFERENCE BETWEEN OPEN	2. CONNECT SIMPLE PHI
ND CLOSED LOOP CONTROL SYSTEMS. DISCUSS THE CONTROL SYSTEM	RESOURCE MATERIAL
CHARACTERISTICS.	3. PROGRAM HYDRAUL
e.accuracy, stability, sensitivity, noise, cost)	
DISCUSS THE CONTROL STRATEGY	4. PROGRAM SERVO EL
TAGES OF M ANUFACTURING PROCESSING.	
ILUSTRATE EXAMPLES OF CONTROL	5. CONTROL A PROCESS
YSTEMS.	
ie.pressure,speed,numerical,computer,)	
VERVIEW OF AUTOMATED CONTROL	TOPICS TO BE COVER
YSTEMS	
DEFINE THE PURPOSE OF AUTOMATIC	
CONTROL SYSTEMS	I. OVERVIEW OF FEEDIN
DESCRIBE THE IMPLEMENTATION OF	
INDUSTRIAL CONTROL SYSTEMS	
DESCRIBE THE TYPES OF MANUFACTURING	2. COMPUTER-CONTROL
PROCESSES THAT USE CONTROLLERS	PROCESSES AND RO
DESCRIBE THE TWO TYPES OF CONTROLLERS USED IN INDUSTRY	and the cases of the
DESCRIBE THE METHODOLGY OF	
CHOOSING THE CORRECT CONTROLLER	
FOR THE INTENDED APPLICATION	A UNTRODUCTION TO N
NDUSTRIAL SERVO CONTROL SYSTEMS	
DISCUSS THE MEANING OF A FEEDBACK	A INTERFACING WITH N
CONTROL SYSTEM.	
DISCUSS THE EVALUATION OF	
ERFORMANCE OF FEEDBACK SYSTEMS	
(ie.error,setpoint,dynamic response,)	
DRAW A BLOCK DIAGRAM OF A	
CLOSED-LOOP FEEDBACK	

LEARNING ACTIVITIES

-DESCRIBE SIMPLE SPEED CONTROL PROPORTIONAL - P + INTEGRAL - P + I + DERIVATIVE - DISCUSS A SERVOMOTOR CONTROL SYSTEM.

- 5 -

THE ACTUATORS OF A INDUSTRIAL CONTROLS

-DESCRIBE THE ADVANTAGES & DISADVANTAGES OF THE THREE TYPES OF ACTUATORS USED IN INDUSTRY. -DESCRIBE THE FACTORS WHICH INFLUENCE THE CHOICE OF A AN ACTUATOR FOR GIVEN APPLICATION. -DISCUSS ELECTRICAL ACTUATION

-SOLENOIDS

- RELAYS

- AC SERVOMOTOR

- STEPPER MOTORS

- DISCUSS HYDRAULIC ACTUATION

- ROTARY

- DISCUSS PNEUMATIC ACTUATION

- LINEAR

- ROTARY

INDUSTRIAL SENSORS & TRANSDUCERS

-DEFINE THE MAJOR DIFFERENCE BETWEEN THE TERMS SENSOR AND TRANSDUCER. -DESCRIBE THE CATEGORIZATION OF SENSORS:

- MECHANICAL

- FLUID

- THERMAL
- OPTICAL

-DISCUSS THE DIFFERENT TYPES OF MECHANICAL TRANSDUCERS:

- DISPLACEMENT

- STRAIN
- MOTION

- DISCUSS THE DIFFERENT TYPES OF FLUID TRANSDUCERS:

- PRESSURE

- FLOW

-DISCUSS THE DIFFERENT TYPES OF TEMPERATURE TRANSDUCERS:

- RTD

- THERMOCOUPLES

required textbookHANDOUTS

- MANUALS FROM THE AUTOMATION LIBRARY

RESOURCE MATERIAL

- -REQUIRED TEXTBOOK - HANDOUTS
- MANUALS FROM THE AUTOMATION LIBRARY

LEARNING ACTIVITIES

- THERMISTORS

- IC SENSORS

-DISCUSS THE DIFFERENT TYPES OF OPTICAL TRANSDUCERS:

- OPTICAL ENCODERS
- VISION SYSTEMS CAMERAS

- 6 -

DESCRIBE SIMPLE SPEED

DESCRIBE THE CATEGORIZATION OF

- LASER SCANNERS
- X-RAYS
- INFRARED CAMERAS
- 3D CAMERAS

OVERVIEW OF PID CONTROL

-DISCUSS PROPORTIONAL PLUS INTEGRAL PLUS DERIVATIVE CONTROL -DESCRIBE THE RELATIONSHIP BETWEEN PROCESS CHARACTERISTICS AND PROPER MODE OF CONTROL -UTILIZE PID WITH PLC FUNCTION BLOCKS

AUTOMATED CONTROL SYSTEMS COURSE NAME

<u>ELN 219 - 5</u> CODE NO.

METHOD(S) OF EVALUATION

TESTS - THREE WRITTEN TESTS TOTALLING 50%. (MINIMUM AVERAGE OF 55% MUST BE MAINTAINED FOR A PASSING GRADE IN ALL THREE TESTS.)

- / -

PROJECTS - FOUR PROJECTS TOTALLING 50%. (MINIMUM AVERAGE OF 55% MUST BE MAINTAINED FOR A PASSING GRADE IN ALL FIVE PROJECTS.)

TOTAL 100%

THE GRADING SYSTEM USED WILL BE AS FOLLOWS:

A = 90 - 100% A = 80 - 89% B = 70 - 79% C = 55 - 69%

R REPEAT

REQUIRED STUDENT RESOURCES:

TEXT BOOKS: AUTOMATED PROCESS CONTROL SYSTEMS CONCEPTS AND HARDWARE RONALD P. HUNTER PRENTICE HALL

ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

- 1) MODERN INDUSTRIAL ELECTRONICS SCHULER - McNAMEE GLENCOE
- 2) FEEDBACK CONTROL SYSTEMS FOR ATECHNICIANS ROBERT T. PICKETT PRINTICE HALL
- 3) AUTOMATED CONTROL SYSTEMS AND COMPONENTS JAMES R. CASRTENS PRINTICE HALL

SPECIAL NOTES:

AUTOMATED CONTROL SYSTEMS. COURSE NAME

TETHOD(S) OF EVALUATION

TESTS - THREE WRITTEN TESTS TOTALLING 50% (MINIMUM AVERAGE OF 55% MUST BE MAINTAINED FOR A PASSING GRADE IN ALL THREE TESTS.)

PROJECTS - FOUR PROJECTS TOTALLING 50%. (MINIMUM AVERAGE OF 55% MUST BE MAINTAINED FOR A PASSING GRADE IN ALL FIVE PROJECTS.)

TOTAL 100%

THE GRADING SYSTEM USED WILL BE AS FOLLOWS

第469、1910年、第三日、約68、日本1917年195、1958年、

R REPEAT

AND AND STUDENT RESOURCESS.

TEXT BOOKS: AUTOMATED PROCESS CONTROL SYSTEMS CONCEPTS AND HARDWARE RONALD P. HUNTER PRENDER HALL

ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGI LIBRARY BOOK SECTION:

- MODERN INDUSTRIAL ELECTRONICS SCHULER - MANAMEE
 GLENCOE
- 2) FEEDBACK CONTROL SYSTEMS FOR ATECHNICIANS ROBERT T. PRIXETT PRINTICE MALL
- 3) AUTOMATED CONTROL SYSTEMS AND COMPONENTS IAMES R. CASETENS PRINTICE HALL

SPECIAL NOTES: